數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)之間有什么區(qū)別?
機(jī)器學(xué)習(xí),有時(shí)也稱(chēng)為計(jì)算智能,近年來(lái)已經(jīng)突破了一些技術(shù)障礙,并在機(jī)器人、機(jī)器翻譯、社交網(wǎng)絡(luò)、電子商務(wù),甚至醫(yī)藥和醫(yī)療保健等領(lǐng)域取得了重大進(jìn)展。機(jī)器學(xué)習(xí)是人工智能的一個(gè)領(lǐng)域,其目標(biāo)是開(kāi)發(fā)學(xué)習(xí)計(jì)算技術(shù)以及構(gòu)建能夠自動(dòng)獲取知識(shí)的系統(tǒng)。
學(xué)習(xí)系統(tǒng)是一種計(jì)算機(jī)程序,它通過(guò)成功解決過(guò)去的問(wèn)題積累的經(jīng)驗(yàn)做出決策。盡管應(yīng)用時(shí)間不長(zhǎng),但是有許多不同的學(xué)習(xí)算法,該領(lǐng)域是計(jì)算領(lǐng)域最熱門(mén)的領(lǐng)域之一,并且定期發(fā)布一些新的技術(shù)和算法。
機(jī)器學(xué)習(xí)vs人工智能
許多人認(rèn)為機(jī)器學(xué)習(xí)和人工智能的含義是一樣的,但這并不十分準(zhǔn)確。人工智能有幾種定義,這其中包含機(jī)器學(xué)習(xí)的廣泛概念。一個(gè)被廣泛接受的定義是,人工智能由依賴(lài)人類(lèi)行為來(lái)解決問(wèn)題的計(jì)算機(jī)制組成。換句話(huà)說(shuō),技術(shù)使計(jì)算機(jī)就像人類(lèi)一樣“思考”來(lái)執(zhí)行任務(wù)。
人類(lèi)能夠分析數(shù)據(jù),發(fā)現(xiàn)其中的模式或趨勢(shì),從中進(jìn)行更明智的分析,然后使用結(jié)論做出決策。在某種意義上,人工智能也遵循同樣的原則。通常,人們完成任務(wù)越多,就越熟練。這是具有學(xué)習(xí)能力的結(jié)果。經(jīng)常重復(fù)或執(zhí)行相關(guān)程序?qū)θ藗儊?lái)說(shuō)是一種培訓(xùn)。在人工智能系統(tǒng)中也會(huì)發(fā)生類(lèi)似的事情:公開(kāi)獲取或記錄在專(zhuān)用平臺(tái)上的數(shù)據(jù)用作人工智能算法的培訓(xùn)。
那么培訓(xùn)是如何完成的?為此目的有幾種算法。這一切都取決于應(yīng)用程序以及它們背后的組織或人員。在這里,最重要的是知道在這一點(diǎn)上機(jī)器學(xué)習(xí)是有意義的。
什么是機(jī)器學(xué)習(xí)?
機(jī)器學(xué)習(xí)也是一個(gè)有多種定義的概念,但在其核心,機(jī)器學(xué)習(xí)是一個(gè)可以根據(jù)自身經(jīng)驗(yàn)自主修改其行為的系統(tǒng),其人為干擾很小。這種行為修改基本上包括建立邏輯規(guī)則,目的是提高任務(wù)的性能,或者根據(jù)應(yīng)用程序做出最適合場(chǎng)景的決策。這些規(guī)則是根據(jù)分析數(shù)據(jù)中的模式識(shí)別生成的。
例如,如果一個(gè)人在搜索引擎中鍵入“勇敢”這個(gè)詞,該服務(wù)需要分析一系列參數(shù)來(lái)決定是否顯示類(lèi)似于激怒或勇敢的結(jié)果,這可能有兩種含義。在眾多可用參數(shù)中有用戶(hù)搜索歷史:例如,如果在尋找“勇敢”之前幾分鐘,則最有可能出現(xiàn)第二種意義。這是一個(gè)非常簡(jiǎn)單的例子,但它說(shuō)明了機(jī)器學(xué)習(xí)的一些重要方面。
重要的是,系統(tǒng)必須根據(jù)大量數(shù)據(jù)進(jìn)行分析,這是搜索者必須放棄的一個(gè)標(biāo)準(zhǔn),因?yàn)樗麄兘邮樟藬?shù)百萬(wàn)次訪問(wèn),因此這是一個(gè)培訓(xùn)標(biāo)準(zhǔn)。
另一個(gè)方面是持續(xù)的數(shù)據(jù)輸入,有利于識(shí)別新標(biāo)準(zhǔn)。假設(shè)“勇敢”這個(gè)詞成為與文化運(yùn)動(dòng)相關(guān)的俚語(yǔ),通過(guò)機(jī)器學(xué)習(xí),搜索引擎將能夠識(shí)別指向該術(shù)語(yǔ)的新含義的模式,并且在一段時(shí)間之后,將能夠在搜索結(jié)果中考慮它。
機(jī)器學(xué)習(xí)有幾種方法。眾所周知的一種方法稱(chēng)之為“深度學(xué)習(xí)”,其中大量數(shù)據(jù)來(lái)自多層人工神經(jīng)網(wǎng)絡(luò),這些算法受到解決復(fù)雜問(wèn)題的大腦神經(jīng)元結(jié)構(gòu)的啟發(fā),例如圖像中的物體識(shí)別。
機(jī)器學(xué)習(xí)的例子
機(jī)器學(xué)習(xí)的使用正在演變成各種各樣的應(yīng)用,人們當(dāng)今擁有的許多技術(shù)資源都基于人工智能和機(jī)器學(xué)習(xí)。
自治數(shù)據(jù)庫(kù) - 借助機(jī)器學(xué)習(xí),自治數(shù)據(jù)庫(kù)處理以前由管理人員(DBA)執(zhí)行的若干任務(wù),允許這些專(zhuān)業(yè)人員處理其他活動(dòng),從而降低因?yàn)槿藶殄e(cuò)誤導(dǎo)致的應(yīng)用程序不可用的風(fēng)險(xiǎn)。
打擊支付系統(tǒng)中的欺詐行為 - 每秒都會(huì)產(chǎn)生各種信用卡欺詐和其他支付方式的嘗試。機(jī)器學(xué)習(xí)允許反欺詐系統(tǒng)在成功之前識(shí)別其中的大部分。
文本翻譯——翻譯必須考慮場(chǎng)景、區(qū)域表達(dá)式和其他參數(shù)。由于采用機(jī)器學(xué)習(xí),自動(dòng)翻譯越來(lái)越精確。
內(nèi)容推薦——視頻和音頻流平臺(tái)使用機(jī)器學(xué)習(xí)來(lái)分析用戶(hù)查看或拒絕的內(nèi)容的歷史記錄,以便為他們提供符合其意愿的建議。
營(yíng)銷(xiāo)和銷(xiāo)售——根據(jù)以前的購(gòu)買(mǎi)推薦產(chǎn)品和服務(wù)的網(wǎng)站使用機(jī)器學(xué)習(xí)來(lái)分析購(gòu)買(mǎi)歷史,并推廣客戶(hù)可能感興趣的其他項(xiàng)目。這種捕獲數(shù)據(jù)、分析數(shù)據(jù)并使用它來(lái)定制購(gòu)物體驗(yàn)的能力或?qū)嵤I(yíng)銷(xiāo)活動(dòng)是零售業(yè)的未來(lái)。
運(yùn)輸——分析數(shù)據(jù)以識(shí)別模式和趨勢(shì)對(duì)于運(yùn)輸行業(yè)至關(guān)重要,這取決于開(kāi)發(fā)更有效的路線(xiàn),并預(yù)測(cè)潛在問(wèn)題以提高可靠性和盈利能力。機(jī)器學(xué)習(xí)數(shù)據(jù)建模和分析方面是運(yùn)輸廠商、公共交通和業(yè)內(nèi)其他組織的重要工具。
石油和天然氣 - 機(jī)器學(xué)習(xí)有助于發(fā)現(xiàn)新的能源,分析土壤中的礦物質(zhì),預(yù)測(cè)煉油廠傳感器的故障,加速石油的分配,使其更加高效和經(jīng)濟(jì)。在這個(gè)行業(yè)中,機(jī)器學(xué)習(xí)應(yīng)用程序的數(shù)量是巨大的,并且持續(xù)增長(zhǎng)。
醫(yī)療保健 - 由于可穿戴設(shè)備和傳感器的出現(xiàn),使醫(yī)療保健專(zhuān)業(yè)人員能夠?qū)崟r(shí)訪問(wèn)患者數(shù)據(jù),因此機(jī)器學(xué)習(xí)是醫(yī)療保健領(lǐng)域不斷發(fā)展的趨勢(shì)。該技術(shù)還可以幫助醫(yī)學(xué)專(zhuān)家分析數(shù)據(jù),以識(shí)別趨勢(shì)或警報(bào),從而改善診斷和治療。
機(jī)器學(xué)習(xí)中使用的方法
兩種最廣泛采用的機(jī)器學(xué)習(xí)方法是監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí),但它們并不是唯一的方法。
通過(guò)標(biāo)記示例訓(xùn)練監(jiān)督學(xué)習(xí)算法,作為已知所需輸出的輸入。例如,設(shè)備可能具有標(biāo)記為“F”(失敗)或“E”(執(zhí)行)的數(shù)據(jù)點(diǎn)。學(xué)習(xí)算法接收一組輸入以及相應(yīng)的正確輸出,并通過(guò)將實(shí)際輸出與正確輸出進(jìn)行比較來(lái)學(xué)習(xí)以發(fā)現(xiàn)錯(cuò)誤。然后它修改結(jié)算模型。通過(guò)分類(lèi)、回歸和梯度增強(qiáng)等方法,監(jiān)督學(xué)習(xí)使用標(biāo)準(zhǔn)來(lái)預(yù)測(cè)附加的非標(biāo)記數(shù)據(jù)中的標(biāo)簽值。監(jiān)督學(xué)習(xí)通常用于歷史數(shù)據(jù)預(yù)測(cè)可能的未來(lái)事件的應(yīng)用中。例如,它可以預(yù)測(cè)信用卡交易何時(shí)可能是欺詐性的,或者哪些投保人傾向于要求其政策。
非監(jiān)督學(xué)習(xí)用于針對(duì)沒(méi)有歷史標(biāo)簽的數(shù)據(jù)。“正確答案”未向系統(tǒng)報(bào)告。算法必須找出所顯示的內(nèi)容。目標(biāo)是探索數(shù)據(jù)并在其中找到一些結(jié)構(gòu)。無(wú)監(jiān)督學(xué)習(xí)適用于交易數(shù)據(jù)。例如,它可以識(shí)別具有相似屬性的客戶(hù)群,然后可以在營(yíng)銷(xiāo)活動(dòng)中對(duì)其進(jìn)行類(lèi)似處理;或者它可以找到分隔不同客戶(hù)群的關(guān)鍵屬性。常用的技術(shù)包括自組織映射、鄰近映射、k-均值分組和分解為奇異值。這些算法還用于分割文本主題、推薦項(xiàng)目和識(shí)別數(shù)據(jù)中的差異點(diǎn)。
半監(jiān)督學(xué)習(xí)用于與監(jiān)督學(xué)習(xí)相同的應(yīng)用程序,但處理有標(biāo)簽和無(wú)標(biāo)簽的數(shù)據(jù)進(jìn)行培訓(xùn)——通常是用大量無(wú)標(biāo)簽數(shù)據(jù)標(biāo)記的少量數(shù)據(jù)(因?yàn)闆](méi)有標(biāo)簽的數(shù)據(jù)更便宜,并且需要花費(fèi)更少的精力來(lái)獲取)。這類(lèi)學(xué)習(xí)可用于分類(lèi)、回歸和預(yù)測(cè)等方法。當(dāng)與標(biāo)簽相關(guān)的成本太高而無(wú)法實(shí)現(xiàn)完全標(biāo)記的培訓(xùn)過(guò)程時(shí),半監(jiān)督學(xué)習(xí)非常有用。其典型例子包括在網(wǎng)絡(luò)攝像頭上識(shí)別人臉。
強(qiáng)化學(xué)習(xí)通常用于機(jī)器人、游戲和導(dǎo)航。有了它,算法通過(guò)嘗試和錯(cuò)誤發(fā)現(xiàn),哪些行為會(huì)帶來(lái)更大的回報(bào)。這種類(lèi)型的學(xué)習(xí)有三個(gè)主要組成部分:代理(學(xué)習(xí)者或決策者)、環(huán)境(代理與之交互的所有內(nèi)容)和行動(dòng)(代理可以做什么)。目標(biāo)是讓代理選擇在給定時(shí)間段內(nèi)最大化預(yù)期回報(bào)的行動(dòng)。如果代理遵循一個(gè)好的政策,可以更快地實(shí)現(xiàn)目標(biāo)。因此,強(qiáng)化學(xué)習(xí)的重點(diǎn)是找出最佳策略。
數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)之間有什么區(qū)別?
雖然所有這些方法都有相同的目標(biāo),提取可用于決策的見(jiàn)解、模式和關(guān)系,但它們具有不同的方法和功能。
數(shù)據(jù)挖掘可以被視為從數(shù)據(jù)中提取洞察力的許多不同方法的超集。它可能涉及傳統(tǒng)的統(tǒng)計(jì)方法和機(jī)器學(xué)習(xí)。數(shù)據(jù)挖掘應(yīng)用來(lái)自多個(gè)區(qū)域的方法來(lái)識(shí)別數(shù)據(jù)中先前未知的模式。這可能包括統(tǒng)計(jì)算法、機(jī)器學(xué)習(xí)、文本分析、時(shí)間序列分析和其他分析領(lǐng)域。數(shù)據(jù)挖掘還包括數(shù)據(jù)存儲(chǔ)和操作的研究和實(shí)踐。
通過(guò)機(jī)器學(xué)習(xí),目的是了解數(shù)據(jù)的結(jié)構(gòu)。因此,統(tǒng)計(jì)模型背后有一個(gè)理論是經(jīng)過(guò)數(shù)學(xué)證明的,但這要求數(shù)據(jù)也滿(mǎn)足某些假設(shè)。機(jī)器學(xué)習(xí)是從使用計(jì)算機(jī)檢查數(shù)據(jù)結(jié)構(gòu)的能力發(fā)展而來(lái)的,即使人們不知道這種結(jié)構(gòu)是什么樣子的。機(jī)器學(xué)習(xí)模型的測(cè)試是新數(shù)據(jù)中的驗(yàn)證錯(cuò)誤,而不是證明空假設(shè)的理論測(cè)試。由于機(jī)器學(xué)習(xí)通常使用迭代的方法從數(shù)據(jù)中學(xué)習(xí),因此可以輕松地自動(dòng)學(xué)習(xí)。這些步驟通過(guò)數(shù)據(jù)執(zhí)行,直到找到一個(gè)可靠的標(biāo)準(zhǔn)。
深度學(xué)習(xí)結(jié)合了計(jì)算能力的進(jìn)步和特殊類(lèi)型的神經(jīng)網(wǎng)絡(luò),以學(xué)習(xí)大量數(shù)據(jù)中的復(fù)雜模式。深度學(xué)習(xí)技術(shù)是當(dāng)今最先進(jìn)的技術(shù),用于識(shí)別圖片中的對(duì)象和語(yǔ)音中的單詞。研究人員正在嘗試將模式識(shí)別方面的成功應(yīng)用于更復(fù)雜的任務(wù),例如機(jī)器翻譯、醫(yī)療診斷以及許多其他社會(huì)和企業(yè)問(wèn)題。
盡管人工智能和機(jī)器學(xué)習(xí)的概念早已出現(xiàn),但它們開(kāi)始成為主流應(yīng)用的一部分。但是,現(xiàn)在仍處于起步階段。如果人工智能和機(jī)器學(xué)習(xí)有用并且令人印象深刻,當(dāng)?shù)玫礁玫挠?xùn)練和改進(jìn)時(shí),其實(shí)施將會(huì)更加有效。
關(guān)鍵詞: 數(shù)據(jù)挖掘 機(jī)器學(xué)習(xí) 深度學(xué)習(xí)
您可能也感興趣:
今日熱點(diǎn)
為您推薦
隔離險(xiǎn)受不少年輕人推崇 不僅看理賠條款還要看免責(zé)條款
北京發(fā)布社保對(duì)賬單公告 4月起可查詢(xún)電子版?zhèn)€人繳費(fèi)信息
更多
- CEVA Logistics 與 Kodiak Robotics 攜手推出自動(dòng)駕駛陸運(yùn)服務(wù)
- 合肥將爭(zhēng)創(chuàng)國(guó)家科技創(chuàng)新中心 打造極具競(jìng)爭(zhēng)力的創(chuàng)新企業(yè)集群
- 英飛凌推出新天線(xiàn)調(diào)諧器,讓5G智能手機(jī)擁有超高的數(shù)據(jù)傳輸速...
- 中國(guó) AR/VR 行業(yè)趨勢(shì)轉(zhuǎn)變,凸顯智能眼鏡對(duì)創(chuàng)新 3D 打印處...
- 貿(mào)澤電子2022 Empowering Innovation Together計(jì)劃起航 推出關(guān)于RISC-V的新播客
- 萊迪思加入OPC基金會(huì)
- 互聯(lián)工廠:工業(yè)連接助推工業(yè)4.0
- Qucell選擇Radisys來(lái)建設(shè)5G小基站
更多
- 這代債券人還有那么幸運(yùn)嗎?
- 鉑科新材控股股東質(zhì)押906萬(wàn)股 用于擬認(rèn)購(gòu)公司發(fā)行可轉(zhuǎn)換公司債券
- 廣東東莞多地調(diào)整為中風(fēng)險(xiǎn)地區(qū)
- (經(jīng)濟(jì))歐洲央行進(jìn)一步縮減購(gòu)債規(guī)模
- 中誠(chéng)信國(guó)際:將“17蘇建01”信用評(píng)級(jí)由A調(diào)低至BBB
- 龍光集團(tuán)債券雷聲滾滾,泓德、圓信永豐兩家公募踩雷
- 中國(guó)2月社會(huì)融資規(guī)模增量為1.19萬(wàn)億元,比上年同期少5315億元
- 陽(yáng)江城投15億元私募債券項(xiàng)目狀態(tài)更新為“已反饋”
排行
最近更新
- 數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)之間有什么區(qū)別?
- 幼兒園本地及遠(yuǎn)程視頻監(jiān)控系統(tǒng)設(shè)計(jì)方案
- 雙聲道音頻功率放大器電路圖分析
- 垂直度、平行度、直線(xiàn)度測(cè)量簡(jiǎn)介
- 2021年全國(guó)消協(xié)組織為消費(fèi)者挽回經(jīng)濟(jì)損失15.2億元
- 新疆與七家國(guó)有金融機(jī)構(gòu)簽署戰(zhàn)略合作協(xié)議
- 一汽-大眾高爾夫GTI運(yùn)動(dòng)轎車(chē),7.1秒多破百,23.18萬(wàn)超值!
- Web3教程協(xié)議RabbitHole發(fā)放NFT紀(jì)念徽章
- 以太坊網(wǎng)絡(luò)Gas費(fèi)已降至15gwei
- 朔州農(nóng)商銀行:多措并舉助推各項(xiàng)經(jīng)營(yíng)業(yè)務(wù)落地見(jiàn)效
- 傳祺持續(xù)向上,將發(fā)展態(tài)勢(shì)拉回主流展現(xiàn)非凡實(shí)力
- 英國(guó)疫情賴(lài)俄烏?
- 2021年光通信行業(yè)龍頭股有哪些?
- 夢(mèng)舟股份屬于什么概念板塊?夢(mèng)舟股份相關(guān)概念板塊解析
- 集裝箱制造上市公司一覽,2021年集裝箱制造上市公司有哪些?
- 第三代核電上市公司有哪些,第三代核電上市公司名單
- 宏達(dá)礦業(yè)是什么概念?宏達(dá)礦業(yè)所屬概念解析
- 達(dá)蘆那韋概念股票有哪些?達(dá)蘆那韋概念股一覽表
- EMC測(cè)試簡(jiǎn)介
- 一位從厭倦調(diào)試NRF24L01無(wú)線(xiàn)模塊到成功的收發(fā)經(jīng)驗(yàn)分享
- 高速變頻電機(jī)測(cè)試解決方案
- 云霄縣重拳整治違法建筑 群眾真心點(diǎn)贊
- 淺談數(shù)據(jù)科學(xué)在現(xiàn)階段企業(yè)中的應(yīng)用與快速發(fā)展
- 齊魯詩(shī)人 | 張浩程:春雨有感(三首)
- 這代債券人還有那么幸運(yùn)嗎?
- 美國(guó)嘻哈巨星Akon即將聯(lián)合Element.Black發(fā)行音樂(lè)盲盒
- 首批“自測(cè)版”新冠抗原檢測(cè)試劑盒來(lái)了?《科創(chuàng)板日?qǐng)?bào)》12日...
- 實(shí)錘自測(cè)抗原檢測(cè)龍頭萬(wàn)孚生物了 12日最新消息
- 央視都報(bào)道了!實(shí)錘鹽野義 抗病毒特效神藥。
- 科普小貼士丨警惕!并不遙遠(yuǎn)的急性白血病
今日要聞
- 垂直度、平行度、直線(xiàn)度測(cè)量簡(jiǎn)介
- 以太坊網(wǎng)絡(luò)Gas費(fèi)已降至15gwei
- Web3教程協(xié)議RabbitHole發(fā)放NFT紀(jì)念徽章
- 雙聲道音頻功率放大器電路圖分析
- 幼兒園本地及遠(yuǎn)程視頻監(jiān)控系統(tǒng)設(shè)計(jì)方案
- 數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)之間有什么區(qū)別?
- 這代債券人還有那么幸運(yùn)嗎?
- EMC測(cè)試簡(jiǎn)介
- 一位從厭倦調(diào)試NRF24L01無(wú)線(xiàn)模塊到成功的收發(fā)經(jīng)驗(yàn)分享
- 高速變頻電機(jī)測(cè)試解決方案