智源研究院發布《2020人工智能十大進展報告》
記者昨天從北京智源人工智能研究院(簡稱“智源研究院”)獲悉,該研究院發布了《2020人工智能十大進展報告》,這是在全體智源學者的共同參與下,評選出過去一年里,人工智能領域科學系統、算法等方向的十大進展。具體如下——
進展1:OpenAI發布全球規模最大的預訓練語言模型GPT-3
2020年5月,OpenAI發布了迄今為止全球規模最大的預訓練語言模型GPT-3。GPT-3具有1750億參數,訓練所用的數據量達到45TB,訓練費用超過1200萬美元。對于所有任務,應用GPT-3無需進行任何梯度更新或微調,僅需要與模型文本交互為其指定任務和展示少量演示即可使其完成任務。GPT-3在許多自然語言處理數據集上均具有出色的性能,包括翻譯、問答和文本填空任務,還包括一些需要即時推理或領域適應的任務等,已在很多實際任務上大幅接近人類水平。
進展2:DeepMind的AlphaFold2破解蛋白質結構預測難題
2020年11月30日,Google旗下DeepMind公司的AlphaFold2人工智能系統在第14屆國際蛋白質結構預測競賽(CASP)中取得桂冠,在評估中的總體中位數得分達到了92.4分,其準確性可以與使用冷凍電子顯微鏡(CryoEM)、核磁共振或X射線晶體學等實驗技術解析的蛋白質3D結構相媲美,有史以來首次把蛋白質結構預測任務做到了基本接近實用的水平。《自然》(Nature)雜志評論認為,AlphaFold2算法解決了困擾生物界“50年來的大問題”。
進展3:深度勢能分子動力學研究獲得戈登·貝爾獎
2020年11月19日,在美國亞特蘭大舉行的國際超級計算大會SC20上,智源學者、北京應用物理與計算數學研究院王涵所在的“深度勢能”團隊,獲得了國際高性能計算應用領域最高獎項“戈登·貝爾獎”。“戈登·貝爾獎”設立于1987年,由美國計算機協會(ACM)頒發,被譽為“計算應用領域的諾貝爾獎”。該團隊研究的“分子動力學”,結合了分子建模、機器學習和高性能計算相關方法,能夠將第一性原理精度分子動力學模擬規模擴展到1億原子,同時計算效率相比此前人類最好水平提升1000倍以上,極大地提升了人類使用計算機模擬客觀物理世界的能力。美國計算機協會(ACM)評價道,基于深度學習的分子動力學模擬通過機器學習和大規模并行的方法,將精確的物理建模帶入了更大尺度的材料模擬中,將來有望為力學、化學、材料、生物乃至工程領域解決實際問題(如大分子藥物開發)發揮更大作用。
進展4:DeepMind等用深度神經網絡求解薛定諤方程促進量子化學發展
薛定諤方程是量子力學的基本方程,即便已經提出70多年,能夠精確求解薛定諤方程的方法少之又少,多年來科學家們一直在努力攻克這一難題。2019年,DeepMind開發出一種費米神經網絡(Fermionic neural networks,簡稱FermiNet)來近似計算薛定諤方程,為深度學習在量子化學領域的發展奠定了基礎,2020年10月,DeepMind開源了FermiNet,相關論文發表在物理學期刊Physical Review Research上。FermiNet是第一個利用深度學習來從第一性原理計算原子和分子能量的嘗試,在精度和準確性上都滿足科研標準,且是目前在相關領域中最為精準的神經網絡模型。另外,2020年9月,德國柏林自由大學的幾位科學家也提出了一種新的深度學習波函數擬設方法,它可以獲得電子薛定諤方程的近乎精確解,相關研究發表在Nature Chemistry上。該類研究所展現的,不僅是深度學習在解決某一特定科學問題過程中的應用,也是深度學習能在生物、化學、材料以及醫藥領域等各領域科研中被廣泛應用的一個遠大前景。
進展5:美國貝勒醫學院通過動態顱內電刺激實現高效率“視皮層打印機”功能
對于全球4000多萬盲人來說,重見光明是一個遙不可及的夢想。2020年5月,美國貝勒醫學院的研究者利用動態顱內電刺激新技術,用植入的微電極陣列構成視覺假體,在人類初級視皮層繪制W、S和Z等字母的形狀,成功地能夠讓盲人“看見”了這些字母。結合馬斯克創辦的腦機接口公司Neuralink發布的高帶寬、全植入式腦機接口系統,下一代視覺假體有可能精準刺激大腦初級視覺皮層的每一個神經元,幫助盲人“看見”更復雜的信息,實現他們看清世界的夢想。
進展6:清華大學首次提出類腦計算完備性概念及計算系統層次結構
2020年10月,智源學者,清華大學張悠慧、李國齊、宋森團隊首次提出“類腦計算完備性”概念以及軟硬件去耦合的類腦計算系統層次結構,通過理論論證與原型實驗證明該類系統的硬件完備性與編譯可行性,擴展類腦計算系統應用范圍使之能支持通用計算。該研究成果發表在2020年10月14日的《自然》(Nature)期刊。《自然》周刊評論認為,“‘完備性’新概念推動了類腦計算”,對于類腦系統存在的軟硬件緊耦合問題而言這是“一個突破性方案”。
進展7:北京大學首次實現基于相變存儲器的神經網絡高速訓練系統
2020年12月,智源學者、北京大學楊玉超團隊提出并實現了一種基于相變存儲器(PCM)電導隨機性的神經網絡高速訓練系統,有效地緩解了人工神經網絡訓練過程中時間、能量開銷巨大并難以在片上實現的問題。該系統在誤差直接回傳算法(DFA)的基礎上進行改進,利用PCM電導的隨機性自然地產生傳播誤差的隨機權重,有效降低了系統的硬件開銷以及訓練過程中的時間、能量消耗。該系統在大型卷積神經網絡的訓練過程中表現優異,為人工神經網絡在終端平臺上的應用以及片上訓練的實現提供了新的方向。
進展8:MIT僅用19個類腦神經元實現控制自動駕駛汽車
受秀麗隱桿線蟲等小型動物腦的啟發,來自MIT計算機科學與人工智能實驗室(CSAIL)、維也納工業大學、奧地利科技學院的團隊僅用19個類腦神經元就實現了控制自動駕駛汽車,而常規的深度神經網絡則需要數百萬神經元。此外,這一神經網絡能夠模仿學習,具有擴展到倉庫的自動化機器人等應用場景的潛力。這一研究成果已發表在2020年10月13日的《自然》雜志子刊《自然·機器智能》(Nature Machine Intelligence)上。
進展9:Google與FaceBook團隊分別提出全新無監督表征學習算法
2020年初,Google與Facebook分別提出SimCLR與MoCo兩個算法,均能夠在無標注數據上學習圖像數據表征。兩個算法背后的框架都是對比學習(contrastive learning)。對比學習的核心訓練信號是圖片的“可區分性”。模型需要區分兩個輸入是來自于同一圖片的不同視角,還是來自完全不同的兩張圖片的輸入。這個任務不需要人類標注,因此可以使用大量無標簽數據進行訓練。盡管Google和FaceBook的兩個工作對很多訓練的細節問題進行了不同的處理,但它們都表明,無監督學習模型可以接近甚至達到有監督模型的效果。
進展10:康奈爾大學提出無偏公平排序模型可緩解檢索排名的馬太效應問題
近年來,檢索的公平性和基于反事實學習的檢索和推薦模型已經成為信息檢索領域重要的研究方向,相關的研究成果已經被廣泛應用于點擊數據糾偏、模型離線評價等,部分技術已經落地于阿里和華為等公司的推薦及搜索產品中。2020年7月,康奈爾大學Thorsten Joachims教授團隊發表了公平無偏的排序學習模型FairCo,一舉奪得了國際信息檢索領域頂會SIGIR 2020最佳論文獎。該研究分析了當前排序模型普遍存在的位置偏差、排序公平性以及物品曝光的馬太效應問題等,基于反事實學習技術提出了具有公平性約束的相關度無偏估計方法,并實現了排序性能的提升,受到業界的廣泛關注和好評。(科技日報記者 華凌)
您可能也感興趣:
為您推薦
8家險企股權被掛牌轉讓,為何險企股權不再被追捧?
深圳最低工資標準調整為2360元/月 失業保險金為2124元/月
遼寧實施失業保險省級統籌 對缺口核定等作出詳細規定
排行
最近更新
- 江蘇發布重大項目清單 增資擴產項目明顯增多
- 山東抓投資抓項目 新興領域投資規模持續擴大
- Gucci在2月將投放 10 個“SuperGucci”NFT
- 美國銀行:美國CBDC將保持美元作為世界儲備貨幣的地位
- 美股三大指數尾盤集體轉漲
- 光伏發電概念股有哪些?光伏發電概念龍頭股一覽
- The new iPad屏幕對比評測
- 電源接通延時器
- 汽車電子穩定系統(ESP)詳解
- 聯想B520一體機拆解
- 焦炭相關股票有哪些?焦炭概念股票龍頭一覽
- 增強信號 3G無線上網卡改裝拆解全攻略
- 盤點全球五大智能手機生產商 華為聯想入圍
- 三星新平板 Galaxy Note 10.1全拆解
- 智能監控防盜報警系統
- 格力電器未來三年股東回報規劃:每年累計分紅不低于當年凈利潤50%
- 消息稱京東科技計劃2022年在港IPO,募資10億至20億美元
- 恒大集團:呼吁境外債權人不采取任何激進的法律行動
- 海航董事長劉璐因個人原因辭職,在海航已近28年
- 青青稞酒預計2021年營收增長30%-40%,四季度凈虧損超1500萬
- 2022年在港上市募資10億美元?京東科技:不予置評
- 財政部修訂出臺《財政行政處罰聽證實施辦法》
- 賣房子需要交什么稅?賣房子必須攜帶哪些證件?
- 醫??ǖ氖褂梅秶心男??補牙可以使用醫保報銷嗎?
- 小產權房能過戶嗎?購買小產權房有什么風險?
- 奕東電子的實際控制人是誰?奕東電子股票上市了嗎?
- 百合股份是一家什么公司?百合股份的股票何時上市?
- 浙江:爭取實施數字人民幣試點
- 支付寶被盜刷后該怎么辦?理賠流程有哪些?
- 春節假期港股休市時間是如何安排的?何時恢復交易?