波多野结衣按摩,在线观看亚洲视频,国产嫩草在线观看,91视频最新地址

首頁 資訊 > 創新 > 正文

ADALM2000實驗:模數轉換-天天即時看

作者: Andreea Pop,系統設計/架構工程師


(資料圖)

Antoniu Miclaus,系統應用工程師

Mark Thoren,系統設計/架構工程師

Doug Mercer,顧問研究員

目標

本實驗活動旨在通過構建說明性示例來探討模數轉換的概念。

背景信息

模數轉換器(ADC)將模擬信號——即溫度、壓力、電壓、電流、距離或光強度等實際信號——轉換為該信號的數字表示。然后,系統可以處理、控制、計算、傳輸或存儲此數字表示。

圖1.模數轉換

ADC以均勻的時間間隔對模擬波形進行采樣,并將數字值分配給每個樣本。數字值以二進制編碼格式在轉換器的輸出端顯示。通過將采樣模擬輸入電壓除以基準電壓,再乘以數字碼數得到此值。轉換器的分辨率由輸出碼中的二進制位數來設定。

圖2.數字輸出碼

ADC執行兩個過程:采樣和量化。ADC將無限分辨率的模擬信號表示為有限分辨率的數字碼。ADC會產生2N個數字值,其中N表示二進制輸出位數。由于轉換器的分辨率有限,模擬輸入信號將落在量化電平之間,從而導致固有的不確定性或量化誤差。該誤差可確定轉換器的最大動態范圍。

圖3.量化過程

采樣過程提供連續時域信號,信號值以離散、均勻的時間間隔測量。通過此過程,根據奈奎斯特準則可確定采樣信號的最大帶寬。該理論認為,信號頻率必須小于或等于一半采樣頻率以防混疊。混疊是指通過采樣過程,目標帶寬內出現所需信號頻段之外的頻率信號的情況。不過,在通信系統設計中,可利用此混疊過程將高頻信號向下轉換為低頻信號。這就是欠采樣技術。欠采樣的標準就是ADC具有足夠的輸入帶寬和動態范圍來采集最高目標頻率信號。

圖4.采樣過程

采樣和量化都是重要的概念,因為它們確定了理想ADC的性能極限。在一個理想ADC中,碼躍遷恰好相距1 LSB(最低有效位)。因此,對于一個N位ADC,共有2N個數字碼,且1 LSB = FS/2N,其中FS為滿量程模擬輸入電壓。然而,實際ADC操作也受到非理想效應的影響,所產生的誤差超出了轉換器分辨率和采樣速率所決定的誤差。與ADC相關的許多交流和直流性能規格中都會體現這些誤差。

圖5.理想ADC的轉換函數

在此范圍內,任何模擬輸入會產生同樣的數字輸出碼。

材料

ADALM2000 主動學習模塊

無焊試驗板和跳線套件

一個OP482 運算放大器

兩個AD654 電壓頻率轉換器

三個1 kΩ電阻

五個10 kΩ電阻

一個1 nF電容

一個SN74HC08與門

一個SN74HC32或門

一個SN74HC04逆變器

一個1 μF電容

一個AD7920 12位ADC

閃存ADC背景信息

Flash ADC,也稱為并行ADC,是將模擬信號轉換為數字信號的最快方法之一。Flash ADC非常適合需要極寬帶寬的應用,但其功耗比其他ADC架構高且通常限制為8位分辨率。典型示例包括數據采集、衛星通信、雷達處理、采樣示波器和高密度硬盤驅動器。

Flash ADC由高速比較器級聯而成。對于一個N位轉換器,電路采用2N -1個比較器,同時有2N個電阻提供基準電壓。當比較器的模擬輸入電壓高于所施加的基準電壓時,其輸出1。否則,比較器輸出0。代碼從1變為0的點就是輸入信號小于相應比較器基準電壓電平的點。

請看圖6所示的電路。

圖6.Flash ADC—模擬側電路

此電路表示2位Flash ADC的模擬側,其架構稱為溫度計代碼(一元碼)編碼。對于此類電路,需要使用額外的邏輯電路將一元碼解碼成適當的數字輸出碼。通過使用邏輯與門、或門和非門,我們可以構建專有編碼器。其輸出為原始數值的二進制表示,最高有效輸入位從0開始。

圖7.Flash ADC—編碼輸出

圖8.Flash ADC試驗板連接

如前所述,Flash ADC使用高速比較器構建而成,但為了方便起見,我們將使用OP482四通道運算放大器來介紹工作原理。或者,可以使用四個AD8561比較器來構建此電路。

硬件設置

在無焊試驗板上構建圖7所示的電路。這是一個用于具有編碼輸出的2位Flash ADC的電路。

程序步驟

向電路提供±5 V電源電壓。在Scopy中將信號發生器的AWG1配置為具有5 V峰峰值幅度、2.5 V偏移和100 Hz頻率的上升斜坡鋸齒波。將AWG2用于為ADC提供5 V恒定基準電壓。

配置邏輯分析儀,使得數字通道DIO0、DIO1和DIO2形成一個針對一元碼解碼的通道組,通道DIO6和DIO7形成一個針對并行輸出解碼的通道組。

輸出信號波形如圖9所示。

圖9.Flash ADC—輸出碼

一元組通道表示2位Flash ADC的輸出溫度計代碼,通過在整個可用范圍(0 V至5 V)內改變輸入模擬電壓來提供所有可能的輸出值。并行通道表示相當于ADC輸出狀態的二進制值。

電壓頻率轉換器用作ADC背景信息

在這個特殊應用中,AD654電壓頻率轉換器用作ADC。

圖10.電壓頻率轉換器用作ADC

為了實現轉換,應將轉換器的輸出端連接到集成間隔定時器/事件計數器的微型計算機。

計數期間的信號邊沿(上升或下降)總計數與輸入電壓成正比。在此特定設置下,1 V滿量程輸入電壓會產生100 kHz信號。如果計數周期為100 ms,則總計數將為10,000。然后依據與該最大值的比例便可確定輸入電壓。因此,計數為5000時,相應的輸入電壓為0.5 V。

硬件設置

構建試驗板電路以將電壓頻率轉換器用作ADC,如圖11所示。

程序步驟

向電路提供5 V電源電壓。將信號發生器的AWG1配置為1 V恒定電壓。

配置示波器,使通道1上顯示輸出信號,并從通道1“測量”選項卡中啟用頻率測量。輸出信號波形如圖12所示。

圖11.電壓頻率轉換器用作ADC—試驗板連接

圖12.滿量程輸入電壓下電壓頻率轉換器用作ADC

圖12中的曲線顯示了電壓頻率轉換器采用1 V滿量程輸入電壓時的輸出信號波形。請注意,相應輸出頻率為100 kHz。

現在將輸入電壓設置為0.5 V。輸出信號波形如圖13所示。

圖13.半量程輸入電壓下電壓頻率轉換器用作ADC

圖中顯示了電壓頻率轉換器采用0.5 V半量程輸入電壓時的輸出信號波形。請注意,輸出頻率現在為50 kHz。

逐次逼近寄存器(SAR) ADC背景信息

逐次逼近寄存器(SAR) ADC在每次轉換時,針對所有可能的量化電平,通過二進制搜索將連續模擬波形轉換為離散數字表示,最后匯聚為數字輸出。

通常,SAR ADC電路由四個子電路組成:

用于采集輸入電壓(VIN)的采樣保持電路(S/H)。

模擬電壓比較器,它將VIN與內部DAC的輸出進行比較并將比較結果輸出至SAR。

SAR子電路,用于向內部DAC提供VIN的近似數字碼。

內部基準DAC,向比較器提供相當于SAR數字碼輸出的模擬電壓。

圖14.SAR ADC的典型架構

對SAR進行初始化,使最高有效位(MSB)等于數字1。將此代碼輸入DAC,然后DAC將此數字碼的模擬等效信號(VREF/2)提供給比較器電路,以便與采樣輸入電壓進行比較。如果此模擬電壓超過VIN,則比較器使SAR重置此位;否則,此位將保留為1。然后將下一位設置為1并進行相同的測試,持續執行此二進制搜索直到SAR中的每個位都已經過測試。所得到的代碼是采樣輸入電壓的數字近似值,并最終由SAR在轉換結束(EOC)時輸出。

圖15.4位SAR ADC示例

圖15顯示了4位轉換的一個示例。y軸表示DAC輸出電壓。在此示例中,第一次比較顯示VIN< VDAC。因此,位3設置為0。然后將DAC設置為0100并進行第二次比較。由于VIN> VDAC,位2保持為1。然后將DAC設置為0110并進行第三次比較。將位1設置為0,然后將DAC設置為0101進行最終比較。最后,由于VIN> VDAC,位0保持為1。

硬件設置

為了利用ADALM2000重點說明SAR ADC的工作原理,對于DAC器件將使用在下次實驗中探討的電路,但此設置中將使用4位DAC(而不是8位)。DAC的輸出端將連接到比較器,同時通過腳本對SAR進行仿真,該腳本基于比較器的輸出執行二進制搜索并生成正確的二進制值。

圖16.SAR ADC原理圖

構建SAR ADC的試驗板電路,如圖17所示。

圖17.SAR ADC試驗板連接

將OP484集成電路中的兩個精密軌到軌運算放大器用于該SAR ADC,一個用于R-2R梯形DAC,另一個作為DAC輸出和輸入電壓之間的比較器。

程序步驟

向電路提供±5 V電源電壓。配置示波器,使通道1上顯示比較器輸出信號,通道2上顯示DAC輸出信號。

將邏輯分析儀中的前4個數字通道分組,并將解碼器設置為并行。

下載SAR ADC腳本,并使用Scopy界面運行腳本。

使用逐次逼近法,根據從比較器輸出端收到的反饋更新數字碼。

利用示波器在時域內實現DAC輸出的逼近行為可視化。產生的波形如圖18所示。

圖18.SAR ADC逐次逼近波形

經過幾個逼近步驟后,輸出值接近輸入值(設置為2 V)。

AD7920 12位ADC背景信息

AD7920是一款12位高速、低功耗SAR ADC。它可以采用單電源供電,電源電壓范圍為2.35 V至5.25 V。此ADC支持串行接口。串行時鐘提供轉換時鐘,并在轉換期間控制來自AD7920的信息傳輸。轉換過程和數據采集過程通過/CS和串行時鐘進行控制,從而為器件與微處理器或DSP接口創造了條件。輸入信號在/CS的下降沿進行采樣,而轉換同時在此處啟動。圖19顯示了ADC采樣階段和轉換階段的簡化原理示意圖。

在采樣階段,SW2閉合且SW1置于A。在此設置下,比較器保持在平衡狀態,采樣電容采集VIN的信號。為使ADC啟動轉換,SW2斷開,而SW1移至位置B,使比較器變得不平衡。控制邏輯和電荷再分配DAC可以加上和減去采樣電容中的固定電荷數量,使得比較器恢復到平衡狀態,進而轉換完成。

硬件設置

圖21給出了AD7920的典型連接設置。VREF取自內部VDD,因此其應充分解耦。這將提供0 V到VDD的模擬輸入范圍。轉換結果以16位字輸出,前4位為0,后12位或10位MSB為結果。

圖19.AD7920采樣和轉換階段

圖20.AD7920試驗板連接

圖21.AD7920典型連接

程序步驟

打開Scopy,使能正電源為3 V。配置信號發生器的通道1為0 V到3 V之間的某一恒定值,例如該域的中間值1.5 V。可以在示波器上監視這些電壓的實際值。

圖22.VIN(通道1)和VREF(通道2)電壓

在邏輯分析儀中,將DIO0、DIO1和DIO2配置為一個組通道。將該組通道設置為SPI,各通道設置為對應的SPI信號——DIO0為CS#,DIO1為CLK,DIO2為MISO。當CS#下降沿啟動數據傳輸時,應將DIO0觸發器設置為下降沿。將DIO1觸發器設置為低電平,并從觸發器設置中將“觸發器邏輯”設置為AND。DIO2是ADC的輸出信號,不需要觸發器設置。使能邏輯分析儀,它應在等待觸發信號。

在模式發生器中配置時鐘信號。使能DIO1通道,將其“模式”設置為5 MHz頻率的時鐘,然后單擊Run(運行)。可以從數字IO工具控制CS#。當切換配置為輸出引腳的DIO0引腳時,轉換機會開始。如果CS#的下降沿和CLK的低電平狀態同時發生,轉換將啟動,應能在邏輯分析儀中看到輸出信號和MISO十六進制數據,如圖23所示。

圖23.AD7920的SPI接口

可以使用ADC轉換函數的公式檢查結果,其中MISO數據為數字輸出碼,示波器通道1上讀取的電壓為模擬輸入,示波器通道2上讀取的電壓為基準輸入,N為AD7920的位數。

以上計算得出的結果是ADC輸入電壓為1.5 V,在示波器通道1上讀出的也是該值。

額外活動:雙斜率ADC

雙斜率ADC(或變體)是許多高精度數字電壓表的核心器件。此架構具有幾個有用的特性:由于大多數誤差源都會抵消,因此只需要幾個精密元件,還可以通過配置來抑制特定噪聲頻率,如50 Hz或60 Hz線路噪聲,并且對高頻噪聲不敏感。

圖24.雙斜率ADC結構

轉換器的工作原理如下:在固定時間內對積分器施加未知輸入電壓(稱為上坡(runup)),然后對積分器施加與輸入極性相反的已知基準電壓(稱為下坡(rundown))。因此,輸入電壓可以根據基準電壓和下坡-上坡時間比計算得到:

圖25.雙斜率ADC積分器輸出波形

可以看出,雙斜率轉換器的精度不受大多數元件容差的影響:

積分器的電阻和電容容差會影響輸出斜率,但同時也會影響上坡和下坡。

用于設置上坡時間和測量下坡時間的時基誤差對兩個時間的影響是相同的。

基準電壓必須準確,因為它會直接影響測量結果。另一個誤差源是積分器電容中的電介質吸收,因此聚丙烯或聚苯乙烯是理想選擇,而鋁電解不太合適。

圖26.雙斜率ADC積分器輸出波形

圖26所示為雙斜率ADC的頻率響應。在固定時間間隔(上坡)內對輸入采樣,上坡開始時電壓對結果的影響與上坡結束時電壓對結果的影響一樣。有時也將此稱為箱式平均值,它能夠抑制在1/T、2/T、3/T等頻率下發生的干擾(噪聲)。200 ms積分時間對應于10個周期的50 Hz噪聲和12個周期的60 Hz噪聲;由于它能夠抑制線路噪聲,因此通常將其作為上坡時間。

仿真

打開這里提供的LTspice?文件DualSlope.asc。

圖27.雙斜率ADC積分器原理圖

運行仿真,探測Vintegrate節點。

圖28.雙斜率ADC積分器仿真1

該仿真將60 Hz線路噪聲添加到直流輸入電壓中。通過.step指令運行幾種情況——1 V、2 V、3 V、4 V 5 V輸入電壓以及60 Hz線路噪聲的幾個不同相位。由于200 ms上坡時間是60 Hz線路周期的整數,所以噪聲在頻率響應中為零,并且無論相位如何,下坡時間都不受影響。將頻率更改為62.5 Hz,使其處于頻率響應的峰值。

圖29.雙斜率ADC積分器仿真2

硬件設置

為雙斜率ADC構建試驗板電路,如圖30所示,并按照圖示對M2K進行連接。

圖30.雙斜率ADC積分器試驗板電路

程序步驟

打開Scopy。內核Scopy初始化文件Dual_slope_scopy_setup.ini以幫助設置。

電源:使能跟蹤,設置為±5 V。

數字IO:DIO2設置為OUT,設置為1。

模式發生器:組DIO0、DIO1,模式:導入(加載文件dual_slope_pattern.csv)。頻率設置為5 Hz。

信號發生器:通道1初始設置為恒定2.5 V。

示波器:200 ms時基,通道1設置為400 mV/刻度。下降沿觸發器,200 mV(將在積分器重置間隔開始時觸發M2K)。

圖31.雙斜率ADC積分器波形

當基準電壓源連接到-5 V電源并將輸入電壓設置為2.5 V時,請注意下坡為2格(400 ms),而上坡為1格(200 ms)。因此:

VIN= 5 V × (200 ms / 400 ms) = 2.5 V

通過改變輸入電壓,可以看到上坡時間發生變化。波形如圖32所示。

圖32.不同輸入電壓的雙斜率ADC積分器波形

實際實現雙斜率轉換器時,將使用一個微控制器來控制積分器并設置上坡/測量下坡時間。大多數微控制器都提供計數器外設,因而很容易實現。

問題:

1.能否說出ADC的若干實際應用?

您可以在學子專區 論壇上找到答案。

關于ADI公司

Analog Devices, Inc. (NASDAQ: ADI)是全球領先的半導體公司,致力于在現實世界與數字世界之間架起橋梁,以實現智能邊緣領域的突破性創新。ADI提供結合模擬、數字和軟件技術的解決方案,推動數字化工廠、汽車和數字醫療等領域的持續發展,應對氣候變化挑戰,并建立人與世界萬物的可靠互聯。ADI公司2022財年收入超過120億美元,全球員工2.4萬余人。攜手全球12.5萬家客戶,ADI助力創新者不斷超越一切可能。更多信息,請訪問www.analog.com/cn。

關于作者

Andreea Pop自2019年起擔任ADI公司的系統設計/架構工程師。她畢業于克盧日-納波卡理工大學,獲電子與通信學士學位和集成電路與系統碩士學位。聯系方式:andreea.pop@analog.com。

Antoniu Miclaus現為ADI公司的系統應用工程師,從事ADI教學項目工作,同時為Circuits from the Lab?、QA自動化和流程管理開發嵌入式軟件。他于2017年2月在羅馬尼亞克盧日-納波卡加盟ADI公司。他目前是貝碧思鮑耶大學軟件工程碩士項目的理學碩士生,擁有克盧日-納波卡科技大學電子與電信工程學士學位。聯系方式:antoniu.miclaus@analog.com。

Mark Thoren是ADI公司的一名系統設計/架構工程師。他擁有緬因大學農業/機械工程學士學位和電氣工程碩士學位。Mark試圖保留配備處于破損狀態并將其恢復原狀的設備的實驗室工作臺。聯系方式:mark.thoren@analog.com。

Doug Mercer于1977年畢業于倫斯勒理工學院(RPI),獲電子工程學士學位。自1977年加入ADI公司以來,他直接或間接貢獻了30多款數據轉換器產品,并擁有13項專利。他于1995年被任命為ADI研究員。2009年,他從全職工作轉型,并繼續以名譽研究員身份擔任ADI顧問,為“主動學習計劃”撰稿。2016年,他被任命為RPI ECSE系的駐校工程師。聯系方式:doug.mercer@analog.com。

關鍵詞:

最近更新

關于本站 管理團隊 版權申明 網站地圖 聯系合作 招聘信息

Copyright © 2005-2023 創投網 - www.extremexp.net All rights reserved
聯系我們:39 60 29 14 2@qq.com
皖ICP備2022009963號-3

主站蜘蛛池模板: 欧美最猛性xxxxx69交| 国产成人综合欧美精品久久| 国产91电影| 久久精品亚洲一区二区三区浴池 | 免费看的一级毛片| 亚洲欧美色鬼久久综合| 久久浮力影院| 欧美一级欧美三级在线观看| 久久综合九色综合网站| 精品精品国产高清a毛片| 久久99国产精品久久99| 哒哒哒免费视频观看在线www| 亚洲a∨精品一区二区三区下载| 丰满上司的美乳| 亚洲精品国产精品乱码不卞| 欧美日韩一级二级三级| 大炕上农村岳的乱| 欧美xxxx做受欧美| 美女张开腿黄网站免费| 美国式禁忌矿桥矿17集| 一边摸一边叫床一边爽| zooslook欧美另类dogs| 精品中文字幕一区在线| 精品一区二区三区免费视频| 欧美黄色免费看| 宅男噜噜噜66网站| 美女被狂揉下部羞羞动漫| 曰批免费视频播放免费| 风流艳妇在线观看| 中文字幕亚洲第一| 啦啦啦手机完整免费高清观看| 奶大灬舒服灬太大了一进一出| 天天5g影院永久免费地址| 国产中文字幕电影| 久久夜色精品国产噜噜亚洲a| 国产精品一区二区久久沈樵| 国产精品美女久久久久| 国产一级做a爰片在线| 亚洲国产视频网| 男人j桶进女人p无遮挡在线观看| 波多野结衣作品大全|