手机看片福利永久国产日韩-手机看片369-手机精品在线-手机国产乱子伦精品视频-国产精品嫩草影院在线观看免费-国产精品嫩草影院在线播放

首頁 生活 > 正文

二階等差數列

在數學中,二階平均數指的是一個數列的每相鄰兩項的平均數后再取平均數的數值。二階等差數列則指的是每相鄰兩項的差相同的數列。本文將探秘二階平均數和二階等差數列的公差之間的關系。

什么是二階等差數列?

二階等差數列是數列的每相鄰兩項的差相同的一個數列。即,假設有一個數列 $a_1, a_2, a_3, ..., a_n$,其任意相鄰兩項之差為 $d_1, d_2, d_3, ..., d_{n-1}$,如果 $d_1, d_2, d_3, ..., d_{n-1}$ 也形成了一個等差數列,則原數列為二階等差數列。

舉例來說,數列 $1,4,7,10,13$ 就是一個二階等差數列,其差數列為 $3,3,3,3$。


(相關資料圖)

二階平均數的計算方式是什么?

二階平均數的計算方式是:一個數列的每相鄰兩項的平均數后再取平均數的數值。

換句話說,如果有一個數列 $a_1, a_2, a_3, ..., a_n$,則其二階平均數為:

$$frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_{i+2}}{2}$$

二階平均數與二階等差數列的公差之間的關系是什么?

對于一個二階等差數列 $a_1, a_2, a_3, ..., a_n$,其二階平均數為:

$$frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_{i+2}}{2}$$

將 $a_{i+2}=a_i+2d$ 代入式子中得:

$$frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_i+2d}{2}=frac{1}{n-2}sum_{i=1}^{n-2}left(a_i+dright)$$

由于該數列為二階等差數列,所以相鄰兩項的差為常數 $d$,且數列中一共有 $n-1$ 個差數,于是:

$$frac{1}{n-2}sum_{i=1}^{n-2}left(a_i+dright)=frac{1}{n-2}left(sum_{i=1}^{n}a_i+(n-2)dright)$$

注意到等差數列的求和公式 $S_n=frac{n}{2}(a_1+a_n)$,于是:

$$frac{1}{n-2}left(sum_{i=1}^{n}a_i+(n-2)dright)=frac{a_1+a_n}{2}$$

即,對于一個二階等差數列,其二階平均數為其首項和末項的平均數。

怎樣通過二階平均數求二階等差數列的公差?

已知二階等差數列的首項和二階平均數,就可以求出其公差。

由上一問可知,二階等差數列的二階平均數等于其首項和末項的平均數,即:

$$frac{a_1+a_n}{2}=A_2$$

而二階平均數 $A_2$ 又等于相鄰兩項之和的平均數的平均數:

$$A_2=frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_{i+2}}{2}$$

將 $a_{i+2}=a_i+2d$ 代入式子中得:

$$A_2=frac{1}{n-2}sum_{i=1}^{n-2}frac{a_i+a_i+2d}{2}=frac{1}{n-2}sum_{i=1}^{n-2}left(a_i+dright)$$

移項得到:

$$frac{n-2}{n}cdot A_2=frac{a_1+a_{n-1}}{2}+d$$

因為 $a_{n-1}=a_1+(n-2)d$,所以:

$$frac{n-2}{n}cdot A_2=frac{a_1+a_1+(n-2)d}{2}+d$$

化簡得:

$$d=frac{2n}{n-2}(A_2-a_1)$$

二階等差數列的性質有哪些?

二階等差數列具有以下性質:

1.二階等差數列的首項、末項和二階平均數的平均值相等。

2.一正一負、兩個相鄰的差數之和為0。

3.一個數列是二階等差數列的充分必要條件是該數列的前三項構成等比數列。

4.一個數列是二階等差數列的充分必要條件是該數列的相鄰三項之比相等。

二階等差數列與算數平均數的關系是什么?

一個數列的算數平均數是其所有項之和除以項數。

對于一個二階等差數列 $a_1, a_2, a_3, ..., a_n$,其算數平均數為:

$$frac{a_1+a_2+a_3+...+a_n}{n}$$

由于該數列為二階等差數列,所以相鄰三項之比相等,設其為 $k$,則:

$$frac{a_2}{a_1}=k, frac{a_3}{a_2}=k, ..., frac{a_n}{a_{n-1}}=k$$

注意到 $a_2=kcdot a_1, a_3=k^2cdot a_1, ..., a_n=k^{n-2}cdot a_1$,于是:

$$frac{a_1+a_2+a_3+...+a_n}{n}=frac{a_1(k^{n-2}+k^{n-3}+...+k+1)}{n}=frac{a_1(k^{n-1}-1)}{(n-1)(k-1)}$$

將 $k$ 代入得:

$$frac{a_1+a_2+a_3+...+a_n}{n}=frac{a_1(a_{n-1}+a_1)}{2(a_1+(n-2)d)}=frac{a_1+a_n}{2}$$

即,對于一個二階等差數列,其算數平均數等于其首項和末項的平均數,與二階平均數的結論相同。

二階等差數列有什么應用?

二階等差數列可以用于描述一些變化規律,例如:

1.在等差數列的基礎上,若差數列也構成了一個等差數列,則該數列為二階等差數列。例如,若初始速度為 $u$,加速度為 $a$,則速度在 $t$ 時刻的值即為二階等差數列 $u, u+at, u+2at, ...$。

2.在統計學中,二階等差數列被用于描述時間序列數據的趨勢部分。

總之,二階平均數與二階等差數列的公差之間存在簡單的關系,這種關系可以用于求解問題。二階等差數列具有一些特殊的性質,在數學和應用領域都有應用。

關鍵詞:

最近更新

關于本站 管理團隊 版權申明 網站地圖 聯系合作 招聘信息

Copyright © 2005-2023 創投網 - www.extremexp.net All rights reserved
聯系我們:39 60 29 14 2@qq.com
皖ICP備2022009963號-3

主站蜘蛛池模板: 久久亚洲国产精品五月天婷| 污网站在线免费看| 一个人看的hd免费视频| 国产馆在线观看| 国产精品伦理一二三区伦理| 国产精品成人va在线观看| 厨房掀起馊子裙子挺进去| 国产大片线上免费看| 国产精品自在线| 天堂在线观看中文字幕| 伦理一区二区三区| 午夜a级理论片在线播放| 中文字幕www| 精品国产欧美一区二区| 美女大量吞精在线观看456| 奶大灬舒服灬太大了一进一出| 在线观看免费毛片| 工囗番漫画全彩无遮拦老师| 免费va欧美在线观看| 三级毛片在线| 山口珠理番号| 三级很黄很黄的视频| 美女主动张腿让男人桶| 国产剧情乱偷| 蜜桃成熟时2005| 三级韩国床戏3小时合集| 动漫洗濯屋| 日本加勒比在线精品视频| 中文字幕亚洲一区二区三区| 男女性潮高清免费网站| 亚洲一道本| 啊灬啊灬啊灬深灬快用力| 国产亚洲美女精品久久久久| 干妞网免费视频| 欧美亚洲一二三区| 快穿之青梅竹马女配| 成人理伦电影在线观看| 87福利电影| 噜噜噜在线视频| 3d动漫精品啪啪一区二区中| 嫩草影院免费观看|